

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

Spectral Assignments of New Symmetric Cobalt(III) Complexes with Macroyclic and β -Diketonato Ligands

Sofija P. Sovilj^a; Ksenija Babić-Samardžija^a; Dragan Stojšić^b

^a Faculty of Chemistry, University of Belgrade, Belgrade, Serbia and Montenegro ^b Department of Toxicological Chemistry, Institute of Toxicology and Pharmacology, Belgrade, Serbia and Montenegro

Online publication date: 08 July 2003

To cite this Article Sovilj, Sofija P. , Babić-Samardžija, Ksenija and Stojšić, Dragan(2003) 'Spectral Assignments of New Symmetric Cobalt(III) Complexes with Macroyclic and β -Diketonato Ligands', *Spectroscopy Letters*, 36: 3, 183 — 196

To link to this Article: DOI: 10.1081/SL-120024350

URL: <http://dx.doi.org/10.1081/SL-120024350>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Spectral Assignments of New Symmetric Cobalt(III) Complexes with Macroyclic and β -Diketonato Ligands

Sofija P. Sovilj,^{1,*} Ksenija Babić-Samardžija,¹ and Dragan Stojšić²

¹Faculty of Chemistry, University of Belgrade, Belgrade,
Serbia and Montenegro

²Department of Toxicological Chemistry, Institute of Toxicology and
Pharmacology, Serbia and Montenegro

ABSTRACT

Three new cobalt(III) complexes of the general formula $[\text{Co}(\text{Rac})\text{-cyclam}](\text{ClO}_4)_2$, where *cyclam* and Rac^- refer to 1,4,8,11-tetraaza cyclotetradecane and β -diketonato ligand, i.e., 1,3-diphenyl-1,3-propanedionato (*dibzac*), 1,1,1,5,5,5-hexafluoro-2,4-pantanedionato (*hfac*) and 2,2,6,6-tetramethyl-3,5-heptanedionato (*tmhd*) ions, respectively, have been prepared. Elemental analysis, conductometric measurements, UV/VIS, IR, ¹H and ¹³C NMR as well as mass spectroscopy have been used to characterize them. In the complexes, cobalt is hexa-coordinated in an

*Correspondence: Sofija P. Sovilj, Faculty of Chemistry, University of Belgrade, P.O. Box 158, 11001 Belgrade, Serbia and Montenegro; E-mail: ssovilj@chem.bg.ac.yu.

octahedral geometry of a folded macrocyclic ligand, and β -diketonates are bound as O,O'-bidentates. The spectroscopic data are influenced by the different R-groups depending on their steric and electronic effects. Finally, a mechanism of mass fragmentation is proposed.

Key Words: Cobalt(III); Cyclam; β -Diketones; Spectroscopic studies.

INTRODUCTION

Investigation of complexes with macrocyclic molecules, especially in the presence of amine quadridentate ligands, is of great theoretical and practical interest.^[1] The [14]aneN₄ *cyclam* (1,4,8,11-tetraazacyclotetradecane) a macrocyclic flexible ring, has its remarkable complexing properties extended by introducing four asymmetric amine nitrogen's and five isomeric forms realized by *trans* or *cis* configurations.^[2,3] Nevertheless, it can be forced into a folded form that can be favored by additional bidentate exocyclic ligands.^[4-9] Various interesting aspects of *cyclam* include not only physical^[1,2] and structural^[3] studies, but also the complex's activity both as a catalyst for CO₂ reduction^[5] and for electrochemistry.^[9,10]

Although β -diketones have been the subject of detailed investigation, there are still many obscurities in the structure and characteristics of their mixed-ligand complexes. Especially their structures have drawn attention, because of the ability to enolize, and a few different ways of coordination.^[11] The chelating "pseudoaromatic" ring of β -diketonates has found extensive application in inquiries related to the understanding of the formation of various transition-metal complexes.^[12-14] They have been shown to impart appreciable stability and volatility to their metal-complexed products.^[15] In addition, acetylacetone, perhaps the best known β -diketone, and derived β -diketonates with different R-groups have been studied extensively^[16] not only in terms of their ability to complex many metal ions^[11-17] but, in their applications in biomedicine,^[18] in the production of homogeneous and heterogeneous catalysts,^[19,20] in the petroleum industry for fuel additives,^[21] and in superconducting thin film manufacturing.^[22]

In our previous paper^[7] we reported the synthesis of the complex [Co(acac)cyclam](ClO₄)₂ (H-acac=2,4-pentanedione) in which the acac anion acts as an O,O'-bidentate ligand and the macrocycle *cyclam* adopts a folded conformation. In continuation of our studies of cobalt(III) complexes with oxygen-based bidentate ligands,^[5,7] our attention now has been put on the preparation and physicochemical properties of three mixed-ligand cobalt(III) complexes with *cyclam* and β -diketonato ligands (*Rac*⁻), i.e., 1,3-diphenyl-1,3-propanedionato (*dibzac*), 1,1,1,5,5-hexafluoro-2,4-

pentanedionato (*hfac*) and 2,2,6,6-tetramethyl-3,5-heptanedionato (*tmhd*) ions. In order to gain new information concerning the electronic structure of the complexes, as well as to make a contribution to the problem of the coordination behavior of β -diketones, their mode of coordination was determined, and the spectrochemical properties of these compounds are discussed here.

EXPERIMENTAL

Caution. The perchlorate salts of compounds containing organic ligands, as prepared in this work, are potentially explosive and must be handled with care.

Synthesis

High-purity grade commercial *cyclam* from Aldrich Chemical Co. and β -diketones, i.e., H-*dibzac*, H-*hfac* and H-*tmhd* respectively, from Merck Chemical Co. were used without further purification.

To a solution of the *cyclam* (200 mg, 1 mmol) in 15 mL of acetone was added $\text{Co}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$ (366 mg, 1 mmol). The reaction mixture was stirred at room temperature and air bubbled through it for 30 minutes. Then 1 mmol of the β -diketones in different solvents (15 mL) were added dropwise, i.e., 224 mg H-*dibzac* in benzene, 0.14 mL H-*hfac* in acetonitrile, 0.21 mL H-*tmhd* in *n*-hexane. The reaction was continued with stirring on a water bath at 60°C for 3 hours. The filtrate was concentrated by slow evaporation to 10 mL. Upon cooling the mixture to room temperature an intensly colored crystalline product of the corresponding complexes was filtered and dried over CaCl_2 . (1) *cis*-[Co(dibzac)cyclam] $(\text{ClO}_4)_2$, orange, yield: 272 mg (40%), $M_w=681.5$, Anal. Calcd. for $\text{C}_{25}\text{H}_{35}\text{N}_4\text{O}_{10}\text{Cl}_2\text{Co}$ (%): C, 44.06; H, 5.18; N, 8.22; Found: C, 43.75; H, 5.25; N, 7.97; (2) *cis*-[Co(hfac)cyclam] $(\text{ClO}_4)_2$, purple, yield: 252 mg (38%), $M_w=665.2$, Anal. Calcd. for $\text{C}_{15}\text{H}_{25}\text{N}_4\text{O}_{10}\text{Cl}_2\text{F}_6\text{Co}$ (%): C, 27.08; H, 3.79; N, 8.42; Found: C, 27.33; H, 3.93; N, 8.82; (3) *cis*-[Co(tmhd)cyclam] $(\text{ClO}_4)_2$, violet, yield: 284 mg (44%), $M_w=641.5$, Anal. Calcd. for $\text{C}_{21}\text{H}_{43}\text{N}_4\text{O}_{10}\text{Cl}_2\text{Co}$ (%): C, 39.32; H, 6.76; N, 8.73; Found: C, 39.36; H, 6.89; N, 8.95.

Measurements

Elemental analyses (C, H, N) were performed by standard micromethods at the Department of Instrumental Analysis of the Faculty of Chemistry, Belgrade. Electronic spectra of aqueous solutions of the complexes (10^{-3} M) were recorded on a GBC UV/VIS 911 A spectrophotometer. Molar

conductivities in acetone solution of the complexes (10^{-3} M) were measured at 20°C with a Jenway-4009 conductivity meter. IR spectra in the 4000–400 cm^{-1} range were measured on a Perkin Elmer 317 $25 \times$ FTIR spectrophotometer, using KBr discs. ^1H and ^{13}C NMR were run on a Gemini YH 200 spectrometer in $(\text{CD}_3)_2\text{CO}$ (1), $\text{DMSO}-\text{d}_6$ (2) and D_2O (3) at room temperature. The chemical shifts were determined relative to TMS. Mass spectra were recorded on a gaseous “ion-trap” (VARIAN 3400) auto-sampler VARIAN 8100 spectrometer with mass-selected detector VARIAN SATURN II and capillary column (J&W Scientific DB-5MS, 60 m \times 0.25 mm). The mass range was at 40–650 m/z at source temperature 260°C, in acetone solutions. The spectra were recorded at 70 eV electron energy for deeper penetration under an atmosphere of flowing helium gas.

RESULTS AND DISCUSSION

The complexes were obtained by direct synthesis with Co(II) to Co(III) oxidation by air, in a molar ratio 1:1:1, starting from $\text{Co}(\text{ClO}_4)_2 \cdot 6\text{H}_2\text{O}$, *cyclam* and H-*dibzac* (benzene/acetone), H-*hfac* (acetonitrile/acetone) or H-*tmhd* (hexane/acetone) solutions (1:1, v/v). The analytical data are in good agreement with the proposed stoichiometry of the complexes. The compounds are colored and appear to be microcrystalline, stable in atmospheric conditions and soluble in water and in common organic solvents. The molar conductivity values of 10^{-3} M solutions fall into the range anticipated for a 1:2 electrolyte^[23] (Table 1).

Table 1. Molar conductivity's values ($\lambda_M/\Omega^{-1}\text{cm}^2\text{mol}^{-1}$) as well as positions of λ_{\max} (nm) and molar absorption coefficients ($\epsilon/\text{M}^{-1}\text{cm}^{-1}$) for the complexes (1)–(3).

Complex		λ_M	$\lambda_{\max} (\epsilon)$ <i>d-d</i>	$\lambda_{\max} (\epsilon)$ of the Rac^-
1	$[\text{Co}(\text{dibzac})\text{cyclam}](\text{ClO}_4)_2$	153	513 (200) 377 (1851)	305 (2958) 269 (6690) 231 (4338)
2	$[\text{Co}(\text{hfac})\text{cyclam}](\text{ClO}_4)_2$	163	530 (61) 380 _{sh} ^a (1260)	233 (7492)
3	$[\text{Co}(\text{tmhd})\text{cyclam}](\text{ClO}_4)_2$	173	527 (196) 332 (2876)	237 (6993)

^ash, shoulder.

Electronic Absorption Spectra

The complexes obtained, with chromophore CoN_4O_2 , have similar electron absorption spectra, which indicates that the central ion and ligands are coordinated in a similar mode. In the visible region they exhibit two maxima which correspond to the spin-allowed $d-d$ transitions, ${}^1\text{A}_{1g} \rightarrow {}^1\text{T}_{1g}$ and ${}^1\text{A}_{1g} \rightarrow {}^1\text{T}_{2g}$ (Table 1). The third very intense band (230–240 nm) appearing in the near ultraviolet region is thought to be an $n \rightarrow \pi^*$ transition in the enolate ring^[24] with some degree of “benzenoid” resonance in addition to the enolate type resonance in which the principal π -delocalization occurs. In the case of the complex (1) bands at 305 and 269 nm correspond to $\pi \rightarrow \pi$ and $\pi \rightarrow \pi^*$ transitions, respectively, upon introduction of the phenyl group, which is consistent with the possibility for enhanced delocalization of π electrons in the benzoylacetonates. Since the metal and ligand π levels are mixed, these bands may have some charge transfer character. The large value of molar absorption coefficients supports the resonance form of the Rac^- structure, indicating its symmetric coordination. Generally, the β -diketone on chelation to cobalt causes a bathochromic shift in the wavelength of maximum absorption.^[25]

IR Spectra

The most informative bands for *cyclam* and Rac^- coordination are collected in Table 2. The appearance of three $\rho(\text{N}-\text{H})$ and two $\rho(\text{CH}_2)$ bands in the 800–910 cm^{-1} range clearly indicates a *cis* configuration of *cyclam*.^[4–9] In contrary, the presence of three bands in this region indicates a *trans* configuration.^[4] The $\nu(\text{NH})$ vibration consists of two peaks that suggest coordination of the folded macrocycle, whereas bands of ionic perchlorate are located at about 1110 cm^{-1} [$\nu(\text{ClO}_4)$] and 625 cm^{-1} [$\delta(\text{ClO}_4)$].

IR spectra are characteristic for the Rac^- anion bounded to the metal through both oxygens.^[11] The $\nu(\text{C}=\text{C})$ and $\nu(\text{C}=\text{O})$ bands of the chelate β -diketones are in the range 1507–1627 cm^{-1} and indicate charge delocalization in the major coordination mode with a resultant coordination via both oxygen atoms.^[17] The high symmetry of the complexes (1)–(3), due to the presence of a C_2 axis of symmetry through both of the ligands, was reflected in the spectral assignments, which is remarkable in a view of the different R-group of the β -diketonato ligands. In the complex (1), presumably a combination of negative inductive and positive resonance effects of the R-phenyl group is presented. The $-\text{CF}_3$ group in the complex (2) due to the electron-withdrawing effect, affects an electronic density decrease,^[16] and consequently results in a shift of $\nu(\text{C}-\text{C})$ and $\nu(\text{C}-\text{O})$

Table 2. The most important IR bands (cm^{-1}) for the (1)–(3) complexes.

Complex	$\rho(\text{N}-\text{H})$	$\rho(\text{CH}_2)$	$\nu(\text{NH})$	$\nu(\text{C}=\text{---C})$	$\nu(\text{C}=\text{---O})$	Vibrations of R-groups	$\nu(\text{ClO}_4)$
							$\delta(\text{ClO}_4)$
1	910 _{sh}	821 _w	3226 _s	1589 _m	1527 _s	$\nu_{\text{ar}}(\text{CH})_{\text{st}}$ 3060 _w	1109 _{vs}
	877 _m	810 _w	2969 _m	1569 _m		$\nu_{\text{ar}}(\text{CC})_{\text{st}}$ 1482 _s ; 1451 _m	626 _m
	859 _m						
2	906 _m	818 _w	3230 _s	1627 _m	1530 _w	$\nu(\text{CF}_3)$ 669; 734; 788 _m	1110 _{vs}
	891 _m	806 _{sh}	3094 _m	1576 _s		$\gamma(\text{CF}_3)$ 1147 _s ; 1257 _s	625 _m
	854 _m						
3	902 _m	826 _m	3229 _s	1560 _s	1507 _m	$\delta(\text{CH}_3)_{\text{as}}$ 1459 _m ; 1428 _m	1110 _{vs}
	886 _m	815 _w	3117 _m	1549 _s		$\delta(\text{CH}_3)_{\text{sy}}$ 1364 _w	626 _m
	863 _m					$\gamma(\text{CH}_3)$ 1270 _s	

Abbreviations: *s*/*h*, shoulder; *w*, weak; *m*, medium; *s*, strong; *vs*, very strong.

bands toward higher frequencies. On the other hand, because of a positive inductive effect of the methyl group which increases the electron density, the complex (3) has a strong but opposite influence on the IR spectrum, moving these bands to lower wave numbers. It can be concluded that the differences in electronic effects of the R-substituents (from high negative to positive) are indicative and largely influence the shifting of frequencies of bands of the coordinated diketone, in the order of the complexes with *hfac*>*dibzac*>*tmhd* ligands. Characteristic IR absorption bands for the coordinated β -diketone R-groups are in expected regions and are also presented in the Table 2.

NMR Spectra

The NMR spectral data for all the complexes are listed in Table 3. The degeneracy of the chemical shifts of the chemically equivalent nuclei of the macrocyclic as well as β -diketonato ligands are affected by the presence of a C_2 axis through both ligands (Table 3 and Figure 1).

The ^1H NMR spectra of the complexes (1)–(3), show three main proton resonance bands belonging to coordinated *cyclam*. There are three types of hydrogen's:^[4–9] 1) the four attached to the nitrogen atoms, 2) the sixteen attached to the α -carbon atoms, and 3) the four attached to the β -carbon atoms. The resultant signals for the α - and β -protons of the macrocycle ligand are typical and all the bands are split, as would be expected from the spin–spin interactions, while the resonances of the amine proton are broadened as a result of quadrupole coupling. The amine proton region could serve as a diagnostic feature for the *cis* or *trans* configuration. In the *trans* complexes all four amine protons in the amine proton region are equivalent and there is only one proton signal,^[4] but in the *cis* complexes there are two pairs of non-equivalent protons.^[4–9] The resonance at δ 5.93–5.31 ppm [for the complexes (1)–(3)] may be assigned to the two amine protons adjacent to the *Rac*[–] ligand (N_e two equatorial hydrogen atoms) and the resonance between δ 6.82–5.93 ppm belongs to the two amine protons in the environment of the methylene groups (N_a two axial hydrogen atoms). The *cis* conformation of *cyclam* is predicted on the basis of minimum-strain arguments^[5] for *cyclam* taking into account the anisotropy of cobalt(III).^[26]

In the region of the macrocyclic aliphatic protons, the resonance's at 2.01–1.96 and 1.89–1.85 ppm may be assigned, based on their chemical shifts, to the methylene groups of the β -carbon atoms remote from the nitrogen atoms (i.e., C4 hydrogen atoms). The remaining partial assignment, mostly based on characteristic coupling patterns, deals with the protons on the α -carbon atoms, of both $-\text{N}-(\text{CH}_2)_2-\text{N}-$ groups (at the

Table 3. ^1H NMR and ^{13}C NMR chemical shifts^a (in ppm) of coordinated cyclam and Rac^- ligands for the complexes (1)–(3).

Complex	δ
1	6.82, s, 2H (2- N_a); 5.31, d, 2H (2- N_e); 2.84, t, 2.39, d, 4H (2- C1); 3.01, d, 2.24, d, 4H (2- C2); 2.73, d, 2.04, d, 4H (2- C3); 1.97, d, 1.89, d, 4H (2- C4); 2.59, q, 2.15, d, 4H (2- C5); 6.50, d, H (C6); 7.21–8.07, m, 6H (C8–C11) C1 , 54.49; C2 , 49.51; C3 , 46.12; C4 , 24.44; C5 , 51.33; C6 , 94.12; C7 , 184.82; C8–C11 128.32–136.52
2	6.63, s, 2H (2- N_a); 5.52, s, 2H (2- N_e); 3.01, d, 2.52, d, 4H (2- C1); 3.08, t, 2.68, t, 4H (2- C2); 2.89, d, 2.42, d, 4H (2- C3); 1.96, t, 1.85, d, 4H (2- C4); 2.77, d, 2.23, d, 4H (2- C5); 6.23, s, H (C6) C1 , 52.72; C2 , 47.54; C3 , 47.54; C4 , 26.69; C5 , 52.72; C6 , 108.53; C7 , 165.26; C8 , 114.31
3	5.93, d, 2H (2- N_a); 5.93, d, 2H (2- N_e); 2.93, d, 2.39, d, 4H (2- C1); 3.08, t, 2.63, m, 4H (2- C2); 2.83, d, 2.33, d, 4H (2- C3); 2.01, d, 1.89, d, 4H (2- C4); 2.73, d, 2.10, d, 4H (2- C5); 6.21, s, H (C6); 1.22, t, 18H (2- C9) C1 , 55.85; C2 , 50.21; C3 , 47.07; C4 , 24.28; C5 , 50.53; C6 , 94.70; C7 , 203.79; C8 , 44.18; C9 , 30.54

Abbreviations: *s*, singlet; *d*, doublet; *t*, triplet; *m*, multiplet.^aIn ppm relative to TMS. For the assignment of the various atoms see Figure 1.

C1 and C2 hydrogen atoms) while the resonance's of the C3 and C5 hydrogen atoms can be attributed to the $-\text{N}-(\text{CH}_2)_3-\text{N}-$ moiety in the α position to the nitrogen atoms (Table 3).

The chemical shifts of the β -diketonate protons are alleged to be due to the “aromatic” nature of the ring^[27] or to its magnetic anisotropy^[28] and,

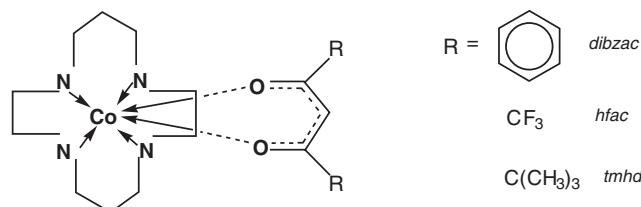
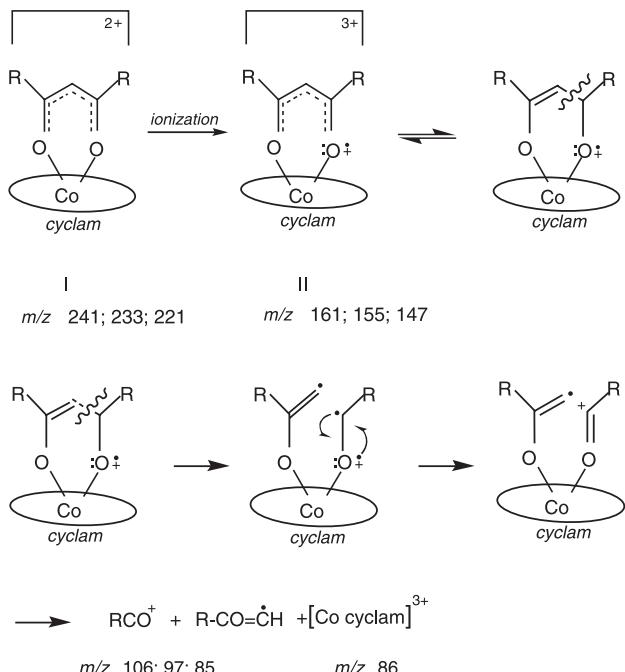


Figure 1. Suggested structure of the complex cation $[\text{Co}(\text{Rac})\text{cyclam}]^{2+}$.

others to the nature of the central atom and the orbitals used in σ and π bonding to the ring.^[27] With regards to the Rac^- ligands, the ^1H NMR spectroscopy can be analyzed as follows: let's assume that the coordinated *acac* shows only two signals (6:1) due to methyl and methinic protons as well is in the primary complex.^[7] The chemical shift of the (C6) proton of $-\text{CH}$ group in the Rac^- ring depends mainly on the electrical symmetry of the complexes, and in the case of compounds (1)–(3) shifts to high field in 6.50–6.21 ppm range relative to the *enol* form of the free Rac^- anion. This effect may be a function of the symmetric Rac^- coordination, suggesting that strong cobalt–oxygen bonding occurs.^[29]

The described ^1H NMR spectra of the complexes (1)–(3) are in good agreement with similar *cis* complexes of known structure^[4–9] and provide additional confirmation of their structure and of the present assignments, as represented in Figure 1.

The high symmetry of the complexes is reflected in the ^{13}C NMR spectra (Table 3 and Figure 1). The various types of carbons have been successfully assigned and notations of these resonance's are according to Figure 1. There are five lines that belong to the symmetric *cyclam* (these five-carbon atoms are non-equivalent) and the others belong to the Rac^- ligands, depending on the chemically equivalent nuclei. The two carbons of the Rac^- anion, i.e., α carbon (C6) and carbonyl (C7), from the complexes (1)–(3) are in expected regions, as well as the other carbons depending on changed R-groups of the ligands (Table 3). The influence of R-groups exhibits movement of these bands in different directions. The powerful efficacy of six fluor atoms, of the *hfac* ligand in the complex (2), moves the chemical shifts strongly downfield in comparison with hydrogencarbon remainders [complexes (1) and (3)] when their values are approximately equal. Carbonyl (C7) carbons are under the strong influence of electronic effects of R-groups, following from a positive to high negative inductive effect, with chemical shifts in the order of complexes with *tmhd* > *dibzac* > *hfac* ligands. A lower, but noticeable influence of R-groups affects the chemical shifts of the (C6) α carbon.


From the results presented above it could be concluded, the β -diketone moiety includes the two carbonyl groups and one more carbon fixed in the α position, while donating oxygen atoms and the rigidity of the end-group of the ligand are responsible for the molecular design.^[12] Spectroscopic behavior of the complexes (1)–(3), which are generally differentiated only in view of the R-groups, are a consequence of their steric, resonance and inductive effects along with conjugation of double bonds through to the whole molecule, not just the oxygen atoms bonded to the cobalt ion.

Mass Spectra

Observations of mass spectra were also utilized for prediction and characterization of the molecular structure of the complexes obtained. At a working temperature of 260°C ionization is followed by thermal decomposition of the molecules. Under these circumstances, affected by the presence of the counter perchlorate ions, the β -diketonato ligand leaves the coordination sphere first. It is supported by two fragments in the mass spectra, i.e., $[\text{Co}(\text{Rac})\text{cyclam}]^{2+}$ (cation I) appearing at m/z 241, 233 and 221 [for (1)–(3)], respectively and basic $[\text{Cocyclam}]^{3+}$ cation at m/z 86. After the cation I ionization, the cation II $[\text{Co}(\text{Rac})\text{cyclam}]^{3+}$ with positive charge on the carbonyl oxygen atom is formed.

The further decomposition of the complexes can be presented by the most plausible mechanism, which explains the general features of fragmentation, as represented in Scheme 1. The base peaks at m/z 161, 155, 147 for (1)–(3), respectively, result from bond cleavage α to the carbonyl group and the charge remaining with the oxygenated fragment. Further fragmentation involving charge migration through the “pseudoaromatic” ring of the β -diketones followed by simultaneous formation of a double carbon–oxygen bond is especially noticeable. The presence of these peaks is evidence for oxygen coordination and seems to be a convincing approach to understanding the molecular structure. The next step is cleavage of the cobalt–oxygen bond which leaves the charge on the fragments $\text{R}(\text{CO})^+$ and gives rise to peaks at m/z 106 (1), 97 (2) or 85 (3). The most intense peaks are the basic R-groups of the diketones with at m/z 78 (1), 69 (2) or 57 (3). In the stable cation $[\text{Cocyclam}]^{3+}$ with m/z 86, which is an elementary ion of the complexes (1)–(3), the macrocyclic ligand *cyclam* undergoes further fragmentation into the $\text{C}_{10}\text{H}_{24}\text{N}_4^+$, $\text{C}_9\text{H}_{21}\text{N}_3^+$, $\text{C}_8\text{H}_{19}\text{N}_3^+$, $\text{C}_7\text{H}_{15}\text{N}_2^+$ and $\text{C}_4\text{H}_8\text{N}^+$ ions at m/z values at 200, 171, 157, 127 and 70, respectively. The most intense ion in the mass spectra of the complexes is the peak at m/z 127, which corresponds to the coordinated *cyclam* and primary cleavage

Scheme 1. The probable mechanism of the fragmentation's according to mass spectral data for (1)–(3) complexes.

bonds next to the two symmetric nitrogen atoms, accompanied by the rearrangement of the hydrogen atom and opening of the ring. Several available sequences follow the ring opening to characteristic peaks for the secondary amine. Several cleavages, which are of secondary importance for the *cyclam*, are especially significant for the lower molecular weight fragments. The latter event is followed by elimination of ethylene to give $CH_3-CH_2-^+NH=CH_2$ (m/z 58), thence by loss of a methylene group to give $CH_3-^+NH=CH_2$ (m/z 44).

It could be concluded that the presence of peaks containing the chelate ligand moiety in mass spectra of the complexes (1)–(3) is characteristic, indicating that the β -diketones, as expected, are weaker coordinating agents than the macrocyclic *cyclam* ligand. This behavior reflects the fact that stepwise removal of a cyclic ligand from the coordination sphere of a metal tends to be more difficult than for open-chain chelate ligands.^[30]

ACKNOWLEDGMENTS

This research was supported by the Ministry of Science, Technology and Development of the Republic Serbia (Project 1318).

REFERENCES

1. McAuley, A.; Subramanian, S. Formation of multinuclear complexes: new developments from cyclam derivatives. *Coord. Chem. Rev.* **2000**, *200*, 200–202, 75–103.
2. Costamagna, J.; Ferraudi, G.; Matsuhiro, B.; Campos-Vallette, M.; Canales, J.; Villagran, M.; Vargas, J.; Aguirre, M.J. Complexes of macrocycles with pendant arms as models for biological molecules. *Coord. Chem. Rev.* **2000**, *196*, 125–164.
3. Donnelly, M.A.; Zimmer, M. Structural analysis of all the nickel 14-membered tetraaza macrocycles in the Cambridge structural database. *Inorg. Chem.* **1999**, *38*, 1650–1658.
4. Lai, T.F.; Poon, C.K. Crystal structure of *cis*-(1,4,8,11-tetraazacyclotetradecane)ethylenediaminecobalt(III) chloride trihydrate. *Inorg. Chem.* **1976**, *15*, 1562–1566.
5. Sovilj, S.P.; Vučković, G.; Babić, K.; Matsumoto, N.; Avramov-Ivić, M.; Jovanović, V.M. Synthesis, characterization, structure and possible catalytic properties of *cis*-oxalato(1,4,8,11-tetraazacyclotetradecane)-cobalt(III) nitrate. *J. Coord. Chem.* **1994**, *31*, 167–179.
6. Sovilj, S.P.; Vučković, G.; Babić, K.; Sabo, T.J.; Macura, S.; Juranić, N. Mixed-ligand complexes of cobalt(III) with dithiocarbamates and a cyclic tetradentate secondary amine. *J. Coord. Chem.* **1997**, *41*, 19–25.
7. Sovilj, S.P.; Babić-Samardžija, K.; Minić, D.M. Synthesis and physicochemical characterization of the complex *cis*-[Co(acac)-cyclam](ClO₄)₂. *J. Serb. Chem. Soc.* **1998**, *63*, 979–985.
8. Sovilj, S.P.; Babić-Samardžija, K. Cobalt(III) complexes with a tetraaza macrocyclic ligand and some heterocyclic dithiocarbamates. *Synth. React. Inorg. Met.-Org. Chem.* **1999**, *29*, 1655–1671.
9. Simon, E.; L'Haridon, P.; Pichon, R.; L'Her, M. Electrochemical, spectrochemical characterization and crystal structure of (1,4,8,11-tetraazacyclotetradecane)(acetylacetone)cobalt(III) complexes. *Inorg. Chim. Acta* **1998**, *282*, 173–179.
10. Jovanović, V.M.; Babić-Samardžija, K.; Sovilj, S.P. Electrochemical examination of mixed-ligand cobalt(III) complexes with tetraazamac-

rocyclic ligand and heterocyclic dithiocarbamates. *Electroanalysis* **2001**, *13*, 1129–1135.

- 11. Seco, M. Acetylacetone: a versatile ligand. *J. Chem. Educ.* **1989**, *66*, 779–780.
- 12. Umetani, S.; Kawase, Y.; Le, T.H.Q.; Matsui, M. Role of the intramolecular hydrogen bond and ligand rigidity in the complexation of trifluoroacetylcyloalkanones with lanthanides: novel strategy for the design of organic ligands of high selectivity. *Inorg. Chim. Acta* **1998**, *267*, 201–207.
- 13. Bradley, D.C.; Gaucer, D.; Mehrotra, R. *Metal β -Diketonates and Allied Derivatives*; Academic Press: London, 1978.
- 14. Fackler, J.P., Jr. Metal β -ketoenolate complexes. *Prog. Inorg. Chem.* **1966**, *7*, 361–425.
- 15. Bradley, D.C. Metal alkoxydes as precursors for electronic and ceramic materials. *Chem. Rev.* **1989**, *89*, 1317–1322 and references cited therein.
- 16. Eng, S.J.; Motekaitis, R.J.; Martell, A.E. The effect of end-group substitutions and use of a mixed solvent system on β -diketones and their iron complexes. *Inorg. Chim. Acta* **1998**, *278*, 170–177.
- 17. Yang, L.; Jin, W.; Lin, J. Synthesis, crystal structure and magnetic properties of novel dinuclear complexes of manganese, cobalt and nickel with 4-acetylbispyrazolone. *Polyhedron* **2000**, *19*, 93–98.
- 18. Aminabhavi, T.M.; Biradar, N.S.; Divakar, M.C. Biologically active bimetallic complexes formed from acetylacetones of copper, cobalt and nickel. *Inorg. Chim. Acta* **1984**, *92*, 99–105.
- 19. Cullen, W.R.; Wickenheiser, E.B. Rhodium(I) complexes of β -diketonates and related ligands as hydrosilylation catalysts. *J. Organomet. Chem.* **1989**, *370*, 141–154.
- 20. Lewis, F.D.; Miller, A.M.; Salvi, G.D. Spectroscopy and photochemistry of nickel(II), palladium(II) and platinum(II) β -diketonates. *Inorg. Chem.* **1995**, *34*, 3173–3181.
- 21. Wenzel, T.J.; Williams, E.J.; Haltiwanger, C.; Seivers, R.E. Studies of metal chelates with the novel ligand 2,2,7-trimethyl-3,5-octanedione. *Polyhedron* **1985**, *4*, 369–378.
- 22. Heiner, T.A.; D'Arcangelis, S.T.; Farzad, F.; Stipkala, J.M.; Meyer, G.J. An acetylacetone-based semiconductor–sensitizer linkage. *Inorg. Chem.* **1996**, *35*, 5319–5324.
- 23. Geary, W.J. The use of conductivity measurements in organic solvents for the characterization of coordination compounds. *Coord. Chem. Rev.* **1971**, *7*, 81–122.
- 24. Fay, R.C.; Piper, T.S. Coordination compounds of trivalent metals with

unsymmetrical bidentate ligands. I. Benzoylacetonates. *J. Am. Chem. Soc.* **1962**, *84*, 2303–2308.

- 25. Irving, H.; Williams, R.J.P. The stability of transition-metal complexes. *J. Chem. Soc.* **1953**, 3192–3210.
- 26. Yoneda, H.; Hokashima, Y. Proton magnetic resonance spectra of metal ammine complexes. I. Cobalt(III) pentammine series. *Bull. Chem. Soc. Jpn.* **1974**, *47*, 669–672.
- 27. Holm, R.H.; Cotton, F.A. Spectral investigations of metal complexes of β -diketones. I. Nuclear magnetic resonance and ultraviolet spectra of acetylacetones. *J. Am. Chem. Soc.* **1958**, *80*, 5658–5663.
- 28. Smith, J.A.S.; Thwaites, J.D. High-resolution nuclear magnetic resonance study of substitution in (beta) diketone chelate. *Discuss. Faraday Soc.* **1962**, *34*, 143–146.
- 29. Nakamoto, K.; McCarthy, P.J.; Ruby, A.; Martell, A.E. Infrared spectra of metal chelate compounds. II. Infrared spectra of acetylacetones of trivalent metals. *J. Am. Chem. Soc.* **1961**, *83*, 1066–1069.
- 30. Kodama, M.; Kimura, E. Ring size effects of macrocyclic ligands on complex stabilities. Mercury(II) complexes of twelve- to fifteen-membered cyclic tetramines. *J. Chem. Soc., Dalton Trans.* **1976**, 2335–2338.

Received February 4, 2003

Accepted February 16, 2003

